Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
Slicing Multithread 8250 app
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Registry
Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Quan
Slicing Multithread 8250 app
Commits
e8c3439a
Commit
e8c3439a
authored
3 years ago
by
Quan
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add a little Mobilenet
parent
90c97ff3
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
387 additions
and
2 deletions
+387
-2
Bbox.java
...com/qualcomm/qti/snpe/imageclassifiers/detector/Bbox.java
+1
-2
MobilenetDetector.java
...qti/snpe/imageclassifiers/detector/MobilenetDetector.java
+386
-0
No files found.
app/src/main/java/com/qualcomm/qti/snpe/imageclassifiers/detector/Bbox.java
View file @
e8c3439a
...
...
@@ -6,7 +6,6 @@ import android.graphics.RectF;
import
org.opencv.core.Mat
;
import
java.time.LocalDateTime
;
import
java.util.ArrayList
;
public
class
Bbox
implements
Comparable
<
Bbox
>
{
...
...
@@ -41,7 +40,7 @@ public class Bbox implements Comparable<Bbox> {
//time
public
Long
lastUpdated
=
System
.
currentTimeMillis
();
public
Long
lastFrExecuted
=
System
.
currentTimeMillis
();
public
LocalDateTime
recognizedDate
=
LocalDateTime
.
now
();
//feature
public
float
[]
feature
;
...
...
This diff is collapsed.
Click to expand it.
app/src/main/java/com/qualcomm/qti/snpe/imageclassifiers/detector/MobilenetDetector.java
0 → 100644
View file @
e8c3439a
package
com
.
qualcomm
.
qti
.
snpe
.
imageclassifiers
.
detector
;
import
android.app.Application
;
import
android.content.Context
;
import
android.content.res.Resources
;
import
android.graphics.Bitmap
;
import
android.graphics.RectF
;
import
android.util.Log
;
import
com.qualcomm.qti.snpe.FloatTensor
;
import
com.qualcomm.qti.snpe.NeuralNetwork
;
import
com.qualcomm.qti.snpe.SNPE
;
import
com.qualcomm.qti.snpe.TF8UserBufferTensor
;
import
com.qualcomm.qti.snpe.Tensor
;
import
com.qualcomm.qti.snpe.UserBufferTensor
;
import
org.opencv.android.Utils
;
import
org.opencv.core.Core
;
import
org.opencv.core.CvType
;
import
org.opencv.core.Mat
;
import
org.opencv.core.Scalar
;
import
org.opencv.core.Size
;
import
org.opencv.imgproc.Imgproc
;
import
java.io.IOException
;
import
java.io.InputStream
;
import
java.util.ArrayList
;
import
java.util.Collections
;
import
java.util.Comparator
;
import
java.util.HashMap
;
import
java.util.List
;
import
java.util.Map
;
import
java.util.Set
;
public
class
MobilenetDetector
{
static
final
String
LOGTAG
=
MobilenetDetector
.
class
.
getSimpleName
();
/**Model size**/
public
static
final
int
MODEL_WIDTH
=
300
;
public
static
final
int
MODEL_HEIGHT
=
300
;
public
boolean
isUsingQuantized
=
false
;
NeuralNetwork
network
=
null
;
// Prepare input buffer
String
mInputLayer
=
""
;
Set
<
String
>
mOutputLayer
;
private
FloatTensor
inputTensor
=
null
;
private
Map
<
String
,
TF8UserBufferTensor
>
inputTensors
=
new
HashMap
<>();
private
Map
<
String
,
TF8UserBufferTensor
>
outputTensors
=
new
HashMap
<>();
private
float
mRatioWidth
;
private
float
mRatioHeight
;
private
float
[]
inputValues
=
new
float
[
MODEL_WIDTH
*
MODEL_HEIGHT
*
3
];
private
Map
<
String
,
FloatTensor
>
inputs
=
new
HashMap
<>();
public
final
List
<
Anchor
>
anchors
=
new
ArrayList
<
Anchor
>();
private
float
IOU_THRESHOLD
=
(
float
)
0.35
;
public
MobilenetDetector
(
Context
context
,
Application
application
,
int
modelRes
)
{
final
Resources
res
=
context
.
getResources
();
final
InputStream
modelInputStream
=
res
.
openRawResource
(
modelRes
);
try
{
final
SNPE
.
NeuralNetworkBuilder
builder
=
new
SNPE
.
NeuralNetworkBuilder
(
application
)
.
setDebugEnabled
(
false
)
.
setRuntimeOrder
(
// NeuralNetwork.Runtime.AIP,
NeuralNetwork
.
Runtime
.
DSP
,
NeuralNetwork
.
Runtime
.
GPU_FLOAT16
,
NeuralNetwork
.
Runtime
.
GPU
,
NeuralNetwork
.
Runtime
.
CPU
)
.
setModel
(
modelInputStream
,
modelInputStream
.
available
())
.
setOutputLayers
(
"concatenation_0"
,
"concatenation_1"
)
.
setCpuFallbackEnabled
(
true
)
.
setUseUserSuppliedBuffers
(
isUsingQuantized
)
.
setPerformanceProfile
(
NeuralNetwork
.
PerformanceProfile
.
HIGH_PERFORMANCE
);
network
=
builder
.
build
();
// Prepare inputs buffer
mInputLayer
=
network
.
getInputTensorsNames
().
iterator
().
next
();
mOutputLayer
=
network
.
getOutputTensorsNames
();
inputTensor
=
network
.
createFloatTensor
(
network
.
getInputTensorsShapes
().
get
(
mInputLayer
));
createAnchor
();
Log
.
d
(
LOGTAG
,
"Mobilenet Detector initiated "
+
network
.
getInputTensorsShapes
().
entrySet
().
iterator
().
next
().
getValue
().
length
);
}
catch
(
IOException
e
)
{
// Do something here
}
}
public
List
<
Bbox
>
detectFrame
(
Bitmap
frame
)
{
mRatioWidth
=
(
float
)
(
MODEL_WIDTH
/
(
frame
.
getWidth
()
*
1.0
));
mRatioHeight
=
(
float
)(
MODEL_HEIGHT
/
(
frame
.
getHeight
()*
1.0
));
/**Preprocessing**/
long
preProcessStart
=
System
.
currentTimeMillis
();
Mat
frameCv
=
new
Mat
();
Bitmap
frame32
=
frame
.
copy
(
Bitmap
.
Config
.
ARGB_8888
,
true
);
Utils
.
bitmapToMat
(
frame32
,
frameCv
);
Mat
resizeimage
=
new
Mat
();
Size
sz
=
new
Size
(
MODEL_WIDTH
,
MODEL_HEIGHT
);
Imgproc
.
resize
(
frameCv
,
resizeimage
,
sz
);
Imgproc
.
cvtColor
(
resizeimage
,
resizeimage
,
Imgproc
.
COLOR_RGBA2RGB
);
//COLOR_RGBA2RGB
resizeimage
.
convertTo
(
resizeimage
,
CvType
.
CV_32F
);
//, 1.0, 0); //convert to 32F
Core
.
subtract
(
resizeimage
,
new
Scalar
(
127.0f
,
127.0f
,
127.0f
),
resizeimage
);
Core
.
divide
(
resizeimage
,
new
Scalar
(
128.0f
,
128.0f
,
128.0f
),
resizeimage
);
resizeimage
.
get
(
0
,
0
,
inputValues
);
//image.astype(np.float32)
long
preProcessTime
=
System
.
currentTimeMillis
()-
preProcessStart
;
Log
.
d
(
LOGTAG
,
"Preprocess_time: "
+
preProcessTime
);
/**Preprocessing**/
/**Convert to FloatTensor**/
long
convertTensorStart
=
System
.
currentTimeMillis
();
if
(!
isUsingQuantized
){
inputTensor
.
write
(
inputValues
,
0
,
inputValues
.
length
);
inputs
.
put
(
mInputLayer
,
inputTensor
);
}
else
{
}
long
convertTensorTime
=
System
.
currentTimeMillis
()-
convertTensorStart
;
Log
.
d
(
LOGTAG
,
"convertTensor_time: "
+
convertTensorTime
);
/**Convert to FloatTensor**/
/**Execute model**/
long
modelExecutionStart
=
System
.
currentTimeMillis
();
final
Map
<
String
,
FloatTensor
>
outputs
=
network
.
execute
(
inputs
);
long
modelExecutionTime
=
System
.
currentTimeMillis
()
-
modelExecutionStart
;
Log
.
d
(
LOGTAG
,
"model_Execute: "
+
modelExecutionTime
);
/**Execute model**/
/**Anchor**/
long
anchorStart
=
System
.
currentTimeMillis
();
List
<
float
[]>
detectList
=
convertOutputs
(
outputs
);
float
[]
locations
=
detectList
.
get
(
0
);
float
[]
confidences
=
detectList
.
get
(
1
);
List
<
Bbox
>
bboxes
=
buildBbox
(
confidences
,
locations
);
long
anchorTime
=
System
.
currentTimeMillis
()
-
anchorStart
;
Log
.
d
(
LOGTAG
,
"anchorExecute: "
+
anchorTime
);
/**Anchor**/
/**NMS**/
long
NMSstart
=
System
.
currentTimeMillis
();
bboxes
=
nms
(
bboxes
);
long
NMStime
=
System
.
currentTimeMillis
()
-
NMSstart
;
Log
.
d
(
LOGTAG
,
"NMS : "
+
NMStime
);
/**NMS**/
return
bboxes
;
}
private
List
<
float
[]>
convertOutputs
(
Map
<
String
,
FloatTensor
>
outputs
)
{
float
[]
locations
=
{};
float
[]
confidences
=
{};
List
<
float
[]>
detectList
=
new
ArrayList
<>();
for
(
Map
.
Entry
<
String
,
FloatTensor
>
output
:
outputs
.
entrySet
())
{
FloatTensor
outputTensor
=
output
.
getValue
();
switch
(
output
.
getKey
())
{
case
"locations"
:
locations
=
new
float
[
outputTensor
.
getSize
()];
outputTensor
.
read
(
locations
,
0
,
locations
.
length
);
// Log.d(LOGTAG,"locations" + Arrays.toString(locations));
break
;
case
"confidences"
:
confidences
=
new
float
[
outputTensor
.
getSize
()];
outputTensor
.
read
(
confidences
,
0
,
confidences
.
length
);
// Log.d(LOGTAG,"confidences" + Arrays.toString(confidences));
break
;
}
}
detectList
.
add
(
locations
);
detectList
.
add
(
confidences
);
return
detectList
;
}
private
void
createAnchor
()
{
float
[]
feature_map_sizes
=
{
19
,
10
,
5
,
3
,
2
,
1
};
float
[]
shrinkage
=
{
16
,
32
,
64
,
100
,
150
,
300
};
float
[][]
box_sizes
=
{{
60
,
105
},
{
105
,
150
},
{
150
,
195
},
{
195
,
240
},
{
240
,
285
},
{
285
,
330
}};
float
[]
ratios
=
{
2.0f
,
3.0f
};
float
image_size
=
300
;
float
[]
priors
=
{};
for
(
int
index
=
0
;
index
<
feature_map_sizes
.
length
;
index
++
)
{
float
scale
=
image_size
/
shrinkage
[
index
];
for
(
int
j
=
0
;
j
<
feature_map_sizes
[
index
];
j
++)
{
for
(
int
i
=
0
;
i
<
feature_map_sizes
[
index
];
i
++)
{
float
x_center
=
(
float
)
(
i
+
0.5
)
/
scale
;
float
y_center
=
(
float
)
(
j
+
0.5
)
/
scale
;
float
size1
=
box_sizes
[
index
][
0
];
float
h1
=
size1
/
image_size
;
float
w1
=
size1
/
image_size
;
final
Anchor
anchor1
=
new
Anchor
(
x_center
,
y_center
,
w1
,
h1
);
anchors
.
add
(
anchor1
);
float
size2
=
(
float
)
Math
.
sqrt
(
box_sizes
[
index
][
0
]
*
box_sizes
[
index
][
1
]);
float
h2
=
size2
/
image_size
;
float
w2
=
size2
/
image_size
;
final
Anchor
anchor2
=
new
Anchor
(
x_center
,
y_center
,
w2
,
h2
);
anchors
.
add
(
anchor2
);
for
(
float
ratio:
ratios
)
{
float
ratio_sqrt
=
(
float
)
Math
.
sqrt
(
ratio
);
final
Anchor
anchor3
=
new
Anchor
(
x_center
,
y_center
,
w1
*
ratio_sqrt
,
h1
/
ratio_sqrt
);
anchors
.
add
(
anchor3
);
final
Anchor
anchor4
=
new
Anchor
(
x_center
,
y_center
,
w1
/
ratio_sqrt
,
h1
*
ratio_sqrt
);
anchors
.
add
(
anchor4
);
}
}
}
}
}
public
RectF
translate
(
final
RectF
location
)
{
//Log.d(LOGTAG,"During translate: " + mRatioWidth + " " + mRatioHeight);
return
new
RectF
((
location
.
left
/
mRatioWidth
),
(
location
.
top
/
mRatioHeight
),
(
location
.
right
/
mRatioWidth
),
(
location
.
bottom
/
mRatioHeight
));
}
private
List
<
Bbox
>
buildBbox
(
float
[]
scores
,
float
[]
boxes
)
{
// final ArrayList<Recognition> bboxes = new ArrayList<Recognition>();
final
ArrayList
<
Bbox
>
bboxes_
=
new
ArrayList
<
Bbox
>();
{
for
(
int
i
=
0
;
i
<
anchors
.
size
();
++
i
)
{
float
cx
=
scores
[
i
*
21
];
float
c_car
=
scores
[
i
*
21
+
7
];
float
c_bicycle
=
scores
[
i
*
21
+
2
];
float
c_bus
=
scores
[
i
*
21
+
6
];
float
c_motorbike
=
scores
[
i
*
21
+
14
];
float
c_person
=
scores
[
i
*
21
+
15
];
float
sum_of_exp
=
0
;
for
(
int
j
=
0
;
j
<
21
;
j
++){
sum_of_exp
+=
(
float
)
Math
.
exp
(
scores
[
i
*
21
+
j
]);
}
List
confidences
=
new
ArrayList
<
Float
>();
confidences
.
add
((
float
)
(
Math
.
exp
(
c_car
))/
sum_of_exp
);
confidences
.
add
((
float
)
(
Math
.
exp
(
c_bicycle
))/
sum_of_exp
);
confidences
.
add
((
float
)
(
Math
.
exp
(
c_bus
))/
sum_of_exp
);
confidences
.
add
((
float
)
(
Math
.
exp
(
c_motorbike
))/
sum_of_exp
);
confidences
.
add
((
float
)
(
Math
.
exp
(
c_person
))/
sum_of_exp
);
float
confidenceMax
=
(
float
)
Collections
.
max
(
confidences
);
int
labelId
=
confidences
.
indexOf
(
confidenceMax
);
if
(
confidenceMax
>
0.3
)
{
Anchor
tmp
=
anchors
.
get
(
i
);
Anchor
tmp1
=
new
Anchor
();
// Recognition result = new Recognition();
Bbox
result_
=
new
Bbox
();
tmp1
.
cx
=
(
float
)
(
tmp
.
cx
+
boxes
[
i
*
4
]
*
0.1
*
tmp
.
sx
);
tmp1
.
cy
=
(
float
)
(
tmp
.
cy
+
boxes
[
i
*
4
+
1
]
*
0.1
*
tmp
.
sy
);
tmp1
.
sx
=
(
float
)
(
tmp
.
sx
*
Math
.
exp
(
boxes
[
i
*
4
+
2
]
*
0.2
));
tmp1
.
sy
=
(
float
)
(
tmp
.
sy
*
Math
.
exp
(
boxes
[
i
*
4
+
3
]
*
0.2
));
// Extract bbox and confidences
float
x1
=
(
tmp1
.
cx
-
tmp1
.
sx
/
2
)
*
MODEL_WIDTH
;
//result
if
(
x1
<
0
)
x1
=
0
;
float
y1
=
(
tmp1
.
cy
-
tmp1
.
sy
/
2
)
*
MODEL_HEIGHT
;
if
(
y1
<
0
)
y1
=
0
;
float
x2
=
(
tmp1
.
cx
+
tmp1
.
sx
/
2
)
*
MODEL_WIDTH
;
if
(
x2
>
MODEL_WIDTH
)
x2
=
MODEL_WIDTH
;
float
y2
=
(
tmp1
.
cy
+
tmp1
.
sy
/
2
)
*
MODEL_HEIGHT
;
if
(
y2
>
MODEL_HEIGHT
)
y2
=
MODEL_HEIGHT
;
RectF
loc
=
new
RectF
(
x1
,
y1
,
x2
,
y2
);
loc
=
translate
(
loc
);
// result.mLocation = loc;
// //translate before add
// result.mConfidenceX = cx;//conf
// result.mConfidenceY = cy;
result_
.
x1
=
loc
.
left
;
result_
.
y1
=
loc
.
top
;
result_
.
x2
=
loc
.
right
;
result_
.
y2
=
loc
.
bottom
;
result_
.
conf
=
confidenceMax
;
result_
.
label
=
Integer
.
toString
(
labelId
);
bboxes_
.
add
(
result_
);
// bboxes.add(result);
}
}
}
// Comparator<Recognition> boxComparator = new Comparator<Recognition>() {
// @Override
// public int compare(Recognition box1, Recognition box2) {
// return (box1.getConfidence() > box2.getConfidence() ? 1 : 0);
// }
// };
Comparator
<
Bbox
>
boxComparator_
=
new
Comparator
<
Bbox
>()
{
@Override
public
int
compare
(
Bbox
box1
,
Bbox
box2
)
{
return
(
box1
.
getConfidence
()
>
box2
.
getConfidence
()
?
1
:
0
);
}
};
// Collections.sort(bboxes, boxComparator);
Collections
.
sort
(
bboxes_
,
boxComparator_
);
return
bboxes_
;
}
private
List
<
Bbox
>
nms
(
List
<
Bbox
>
bboxes
)
{
List
<
Bbox
>
selected
=
new
ArrayList
<
Bbox
>();
for
(
Bbox
boxA
:
bboxes
)
{
boolean
shouldSelect
=
true
;
// Does the current box overlap one of the selected boxes more than the
// given threshold amount? Then it's too similar, so don't keep it.
for
(
Bbox
boxB
:
selected
)
{
if
(
IOU
(
boxA
,
boxB
)
>
IOU_THRESHOLD
)
{
shouldSelect
=
false
;
break
;
}
}
// This bounding box did not overlap too much with any previously selected
// bounding box, so we'll keep it.
if
(
shouldSelect
)
{
selected
.
add
(
boxA
);
}
}
return
selected
;
}
private
float
IOU
(
Bbox
a
,
Bbox
b
)
{
float
areaA
=
(
a
.
x2
-
a
.
x1
)
*
(
a
.
y2
-
a
.
y1
);
if
(
areaA
<=
0
)
{
return
0
;
}
float
areaB
=
(
b
.
x2
-
b
.
x1
)
*
(
b
.
y2
-
b
.
y1
);
if
(
areaB
<=
0
)
{
return
0
;
}
float
intersectionMinX
=
Math
.
max
(
a
.
x1
,
b
.
x1
);
float
intersectionMinY
=
Math
.
max
(
a
.
y1
,
b
.
y1
);
float
intersectionMaxX
=
Math
.
min
(
a
.
x2
,
b
.
x2
);
float
intersectionMaxY
=
Math
.
min
(
a
.
y2
,
b
.
y2
);
float
intersectionArea
=
Math
.
max
(
intersectionMaxY
-
intersectionMinY
,
0
)
*
Math
.
max
(
intersectionMaxX
-
intersectionMinX
,
0
);
return
intersectionArea
/
(
areaA
+
areaB
-
intersectionArea
);
}
@SafeVarargs
private
final
void
releaseTensors
(
Map
<
String
,
?
extends
Tensor
>...
tensorMaps
)
{
for
(
Map
<
String
,
?
extends
Tensor
>
tensorMap:
tensorMaps
)
{
for
(
Tensor
tensor:
tensorMap
.
values
())
{
tensor
.
release
();
}
}
}
public
void
close
()
{
network
.
release
();
// releaseTensors(inputs);
releaseTf8Tensors
(
inputTensors
,
outputTensors
);
}
private
final
void
releaseTf8Tensors
(
Map
<
String
,
?
extends
UserBufferTensor
>...
tensorMaps
)
{
for
(
Map
<
String
,
?
extends
UserBufferTensor
>
tensorMap:
tensorMaps
)
{
for
(
UserBufferTensor
tensor:
tensorMap
.
values
())
{
tensor
.
release
();
}
}
}
}
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment