Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
Slicing Multithread 8250 app
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Registry
Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Quan
Slicing Multithread 8250 app
Commits
e8c3439a
Commit
e8c3439a
authored
Oct 21, 2021
by
Quan
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add a little Mobilenet
parent
90c97ff3
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
387 additions
and
2 deletions
+387
-2
Bbox.java
...com/qualcomm/qti/snpe/imageclassifiers/detector/Bbox.java
+1
-2
MobilenetDetector.java
...qti/snpe/imageclassifiers/detector/MobilenetDetector.java
+386
-0
No files found.
app/src/main/java/com/qualcomm/qti/snpe/imageclassifiers/detector/Bbox.java
View file @
e8c3439a
...
...
@@ -6,7 +6,6 @@ import android.graphics.RectF;
import
org.opencv.core.Mat
;
import
java.time.LocalDateTime
;
import
java.util.ArrayList
;
public
class
Bbox
implements
Comparable
<
Bbox
>
{
...
...
@@ -41,7 +40,7 @@ public class Bbox implements Comparable<Bbox> {
//time
public
Long
lastUpdated
=
System
.
currentTimeMillis
();
public
Long
lastFrExecuted
=
System
.
currentTimeMillis
();
public
LocalDateTime
recognizedDate
=
LocalDateTime
.
now
();
//feature
public
float
[]
feature
;
...
...
app/src/main/java/com/qualcomm/qti/snpe/imageclassifiers/detector/MobilenetDetector.java
0 → 100644
View file @
e8c3439a
package
com
.
qualcomm
.
qti
.
snpe
.
imageclassifiers
.
detector
;
import
android.app.Application
;
import
android.content.Context
;
import
android.content.res.Resources
;
import
android.graphics.Bitmap
;
import
android.graphics.RectF
;
import
android.util.Log
;
import
com.qualcomm.qti.snpe.FloatTensor
;
import
com.qualcomm.qti.snpe.NeuralNetwork
;
import
com.qualcomm.qti.snpe.SNPE
;
import
com.qualcomm.qti.snpe.TF8UserBufferTensor
;
import
com.qualcomm.qti.snpe.Tensor
;
import
com.qualcomm.qti.snpe.UserBufferTensor
;
import
org.opencv.android.Utils
;
import
org.opencv.core.Core
;
import
org.opencv.core.CvType
;
import
org.opencv.core.Mat
;
import
org.opencv.core.Scalar
;
import
org.opencv.core.Size
;
import
org.opencv.imgproc.Imgproc
;
import
java.io.IOException
;
import
java.io.InputStream
;
import
java.util.ArrayList
;
import
java.util.Collections
;
import
java.util.Comparator
;
import
java.util.HashMap
;
import
java.util.List
;
import
java.util.Map
;
import
java.util.Set
;
public
class
MobilenetDetector
{
static
final
String
LOGTAG
=
MobilenetDetector
.
class
.
getSimpleName
();
/**Model size**/
public
static
final
int
MODEL_WIDTH
=
300
;
public
static
final
int
MODEL_HEIGHT
=
300
;
public
boolean
isUsingQuantized
=
false
;
NeuralNetwork
network
=
null
;
// Prepare input buffer
String
mInputLayer
=
""
;
Set
<
String
>
mOutputLayer
;
private
FloatTensor
inputTensor
=
null
;
private
Map
<
String
,
TF8UserBufferTensor
>
inputTensors
=
new
HashMap
<>();
private
Map
<
String
,
TF8UserBufferTensor
>
outputTensors
=
new
HashMap
<>();
private
float
mRatioWidth
;
private
float
mRatioHeight
;
private
float
[]
inputValues
=
new
float
[
MODEL_WIDTH
*
MODEL_HEIGHT
*
3
];
private
Map
<
String
,
FloatTensor
>
inputs
=
new
HashMap
<>();
public
final
List
<
Anchor
>
anchors
=
new
ArrayList
<
Anchor
>();
private
float
IOU_THRESHOLD
=
(
float
)
0.35
;
public
MobilenetDetector
(
Context
context
,
Application
application
,
int
modelRes
)
{
final
Resources
res
=
context
.
getResources
();
final
InputStream
modelInputStream
=
res
.
openRawResource
(
modelRes
);
try
{
final
SNPE
.
NeuralNetworkBuilder
builder
=
new
SNPE
.
NeuralNetworkBuilder
(
application
)
.
setDebugEnabled
(
false
)
.
setRuntimeOrder
(
// NeuralNetwork.Runtime.AIP,
NeuralNetwork
.
Runtime
.
DSP
,
NeuralNetwork
.
Runtime
.
GPU_FLOAT16
,
NeuralNetwork
.
Runtime
.
GPU
,
NeuralNetwork
.
Runtime
.
CPU
)
.
setModel
(
modelInputStream
,
modelInputStream
.
available
())
.
setOutputLayers
(
"concatenation_0"
,
"concatenation_1"
)
.
setCpuFallbackEnabled
(
true
)
.
setUseUserSuppliedBuffers
(
isUsingQuantized
)
.
setPerformanceProfile
(
NeuralNetwork
.
PerformanceProfile
.
HIGH_PERFORMANCE
);
network
=
builder
.
build
();
// Prepare inputs buffer
mInputLayer
=
network
.
getInputTensorsNames
().
iterator
().
next
();
mOutputLayer
=
network
.
getOutputTensorsNames
();
inputTensor
=
network
.
createFloatTensor
(
network
.
getInputTensorsShapes
().
get
(
mInputLayer
));
createAnchor
();
Log
.
d
(
LOGTAG
,
"Mobilenet Detector initiated "
+
network
.
getInputTensorsShapes
().
entrySet
().
iterator
().
next
().
getValue
().
length
);
}
catch
(
IOException
e
)
{
// Do something here
}
}
public
List
<
Bbox
>
detectFrame
(
Bitmap
frame
)
{
mRatioWidth
=
(
float
)
(
MODEL_WIDTH
/
(
frame
.
getWidth
()
*
1.0
));
mRatioHeight
=
(
float
)(
MODEL_HEIGHT
/
(
frame
.
getHeight
()*
1.0
));
/**Preprocessing**/
long
preProcessStart
=
System
.
currentTimeMillis
();
Mat
frameCv
=
new
Mat
();
Bitmap
frame32
=
frame
.
copy
(
Bitmap
.
Config
.
ARGB_8888
,
true
);
Utils
.
bitmapToMat
(
frame32
,
frameCv
);
Mat
resizeimage
=
new
Mat
();
Size
sz
=
new
Size
(
MODEL_WIDTH
,
MODEL_HEIGHT
);
Imgproc
.
resize
(
frameCv
,
resizeimage
,
sz
);
Imgproc
.
cvtColor
(
resizeimage
,
resizeimage
,
Imgproc
.
COLOR_RGBA2RGB
);
//COLOR_RGBA2RGB
resizeimage
.
convertTo
(
resizeimage
,
CvType
.
CV_32F
);
//, 1.0, 0); //convert to 32F
Core
.
subtract
(
resizeimage
,
new
Scalar
(
127.0f
,
127.0f
,
127.0f
),
resizeimage
);
Core
.
divide
(
resizeimage
,
new
Scalar
(
128.0f
,
128.0f
,
128.0f
),
resizeimage
);
resizeimage
.
get
(
0
,
0
,
inputValues
);
//image.astype(np.float32)
long
preProcessTime
=
System
.
currentTimeMillis
()-
preProcessStart
;
Log
.
d
(
LOGTAG
,
"Preprocess_time: "
+
preProcessTime
);
/**Preprocessing**/
/**Convert to FloatTensor**/
long
convertTensorStart
=
System
.
currentTimeMillis
();
if
(!
isUsingQuantized
){
inputTensor
.
write
(
inputValues
,
0
,
inputValues
.
length
);
inputs
.
put
(
mInputLayer
,
inputTensor
);
}
else
{
}
long
convertTensorTime
=
System
.
currentTimeMillis
()-
convertTensorStart
;
Log
.
d
(
LOGTAG
,
"convertTensor_time: "
+
convertTensorTime
);
/**Convert to FloatTensor**/
/**Execute model**/
long
modelExecutionStart
=
System
.
currentTimeMillis
();
final
Map
<
String
,
FloatTensor
>
outputs
=
network
.
execute
(
inputs
);
long
modelExecutionTime
=
System
.
currentTimeMillis
()
-
modelExecutionStart
;
Log
.
d
(
LOGTAG
,
"model_Execute: "
+
modelExecutionTime
);
/**Execute model**/
/**Anchor**/
long
anchorStart
=
System
.
currentTimeMillis
();
List
<
float
[]>
detectList
=
convertOutputs
(
outputs
);
float
[]
locations
=
detectList
.
get
(
0
);
float
[]
confidences
=
detectList
.
get
(
1
);
List
<
Bbox
>
bboxes
=
buildBbox
(
confidences
,
locations
);
long
anchorTime
=
System
.
currentTimeMillis
()
-
anchorStart
;
Log
.
d
(
LOGTAG
,
"anchorExecute: "
+
anchorTime
);
/**Anchor**/
/**NMS**/
long
NMSstart
=
System
.
currentTimeMillis
();
bboxes
=
nms
(
bboxes
);
long
NMStime
=
System
.
currentTimeMillis
()
-
NMSstart
;
Log
.
d
(
LOGTAG
,
"NMS : "
+
NMStime
);
/**NMS**/
return
bboxes
;
}
private
List
<
float
[]>
convertOutputs
(
Map
<
String
,
FloatTensor
>
outputs
)
{
float
[]
locations
=
{};
float
[]
confidences
=
{};
List
<
float
[]>
detectList
=
new
ArrayList
<>();
for
(
Map
.
Entry
<
String
,
FloatTensor
>
output
:
outputs
.
entrySet
())
{
FloatTensor
outputTensor
=
output
.
getValue
();
switch
(
output
.
getKey
())
{
case
"locations"
:
locations
=
new
float
[
outputTensor
.
getSize
()];
outputTensor
.
read
(
locations
,
0
,
locations
.
length
);
// Log.d(LOGTAG,"locations" + Arrays.toString(locations));
break
;
case
"confidences"
:
confidences
=
new
float
[
outputTensor
.
getSize
()];
outputTensor
.
read
(
confidences
,
0
,
confidences
.
length
);
// Log.d(LOGTAG,"confidences" + Arrays.toString(confidences));
break
;
}
}
detectList
.
add
(
locations
);
detectList
.
add
(
confidences
);
return
detectList
;
}
private
void
createAnchor
()
{
float
[]
feature_map_sizes
=
{
19
,
10
,
5
,
3
,
2
,
1
};
float
[]
shrinkage
=
{
16
,
32
,
64
,
100
,
150
,
300
};
float
[][]
box_sizes
=
{{
60
,
105
},
{
105
,
150
},
{
150
,
195
},
{
195
,
240
},
{
240
,
285
},
{
285
,
330
}};
float
[]
ratios
=
{
2.0f
,
3.0f
};
float
image_size
=
300
;
float
[]
priors
=
{};
for
(
int
index
=
0
;
index
<
feature_map_sizes
.
length
;
index
++
)
{
float
scale
=
image_size
/
shrinkage
[
index
];
for
(
int
j
=
0
;
j
<
feature_map_sizes
[
index
];
j
++)
{
for
(
int
i
=
0
;
i
<
feature_map_sizes
[
index
];
i
++)
{
float
x_center
=
(
float
)
(
i
+
0.5
)
/
scale
;
float
y_center
=
(
float
)
(
j
+
0.5
)
/
scale
;
float
size1
=
box_sizes
[
index
][
0
];
float
h1
=
size1
/
image_size
;
float
w1
=
size1
/
image_size
;
final
Anchor
anchor1
=
new
Anchor
(
x_center
,
y_center
,
w1
,
h1
);
anchors
.
add
(
anchor1
);
float
size2
=
(
float
)
Math
.
sqrt
(
box_sizes
[
index
][
0
]
*
box_sizes
[
index
][
1
]);
float
h2
=
size2
/
image_size
;
float
w2
=
size2
/
image_size
;
final
Anchor
anchor2
=
new
Anchor
(
x_center
,
y_center
,
w2
,
h2
);
anchors
.
add
(
anchor2
);
for
(
float
ratio:
ratios
)
{
float
ratio_sqrt
=
(
float
)
Math
.
sqrt
(
ratio
);
final
Anchor
anchor3
=
new
Anchor
(
x_center
,
y_center
,
w1
*
ratio_sqrt
,
h1
/
ratio_sqrt
);
anchors
.
add
(
anchor3
);
final
Anchor
anchor4
=
new
Anchor
(
x_center
,
y_center
,
w1
/
ratio_sqrt
,
h1
*
ratio_sqrt
);
anchors
.
add
(
anchor4
);
}
}
}
}
}
public
RectF
translate
(
final
RectF
location
)
{
//Log.d(LOGTAG,"During translate: " + mRatioWidth + " " + mRatioHeight);
return
new
RectF
((
location
.
left
/
mRatioWidth
),
(
location
.
top
/
mRatioHeight
),
(
location
.
right
/
mRatioWidth
),
(
location
.
bottom
/
mRatioHeight
));
}
private
List
<
Bbox
>
buildBbox
(
float
[]
scores
,
float
[]
boxes
)
{
// final ArrayList<Recognition> bboxes = new ArrayList<Recognition>();
final
ArrayList
<
Bbox
>
bboxes_
=
new
ArrayList
<
Bbox
>();
{
for
(
int
i
=
0
;
i
<
anchors
.
size
();
++
i
)
{
float
cx
=
scores
[
i
*
21
];
float
c_car
=
scores
[
i
*
21
+
7
];
float
c_bicycle
=
scores
[
i
*
21
+
2
];
float
c_bus
=
scores
[
i
*
21
+
6
];
float
c_motorbike
=
scores
[
i
*
21
+
14
];
float
c_person
=
scores
[
i
*
21
+
15
];
float
sum_of_exp
=
0
;
for
(
int
j
=
0
;
j
<
21
;
j
++){
sum_of_exp
+=
(
float
)
Math
.
exp
(
scores
[
i
*
21
+
j
]);
}
List
confidences
=
new
ArrayList
<
Float
>();
confidences
.
add
((
float
)
(
Math
.
exp
(
c_car
))/
sum_of_exp
);
confidences
.
add
((
float
)
(
Math
.
exp
(
c_bicycle
))/
sum_of_exp
);
confidences
.
add
((
float
)
(
Math
.
exp
(
c_bus
))/
sum_of_exp
);
confidences
.
add
((
float
)
(
Math
.
exp
(
c_motorbike
))/
sum_of_exp
);
confidences
.
add
((
float
)
(
Math
.
exp
(
c_person
))/
sum_of_exp
);
float
confidenceMax
=
(
float
)
Collections
.
max
(
confidences
);
int
labelId
=
confidences
.
indexOf
(
confidenceMax
);
if
(
confidenceMax
>
0.3
)
{
Anchor
tmp
=
anchors
.
get
(
i
);
Anchor
tmp1
=
new
Anchor
();
// Recognition result = new Recognition();
Bbox
result_
=
new
Bbox
();
tmp1
.
cx
=
(
float
)
(
tmp
.
cx
+
boxes
[
i
*
4
]
*
0.1
*
tmp
.
sx
);
tmp1
.
cy
=
(
float
)
(
tmp
.
cy
+
boxes
[
i
*
4
+
1
]
*
0.1
*
tmp
.
sy
);
tmp1
.
sx
=
(
float
)
(
tmp
.
sx
*
Math
.
exp
(
boxes
[
i
*
4
+
2
]
*
0.2
));
tmp1
.
sy
=
(
float
)
(
tmp
.
sy
*
Math
.
exp
(
boxes
[
i
*
4
+
3
]
*
0.2
));
// Extract bbox and confidences
float
x1
=
(
tmp1
.
cx
-
tmp1
.
sx
/
2
)
*
MODEL_WIDTH
;
//result
if
(
x1
<
0
)
x1
=
0
;
float
y1
=
(
tmp1
.
cy
-
tmp1
.
sy
/
2
)
*
MODEL_HEIGHT
;
if
(
y1
<
0
)
y1
=
0
;
float
x2
=
(
tmp1
.
cx
+
tmp1
.
sx
/
2
)
*
MODEL_WIDTH
;
if
(
x2
>
MODEL_WIDTH
)
x2
=
MODEL_WIDTH
;
float
y2
=
(
tmp1
.
cy
+
tmp1
.
sy
/
2
)
*
MODEL_HEIGHT
;
if
(
y2
>
MODEL_HEIGHT
)
y2
=
MODEL_HEIGHT
;
RectF
loc
=
new
RectF
(
x1
,
y1
,
x2
,
y2
);
loc
=
translate
(
loc
);
// result.mLocation = loc;
// //translate before add
// result.mConfidenceX = cx;//conf
// result.mConfidenceY = cy;
result_
.
x1
=
loc
.
left
;
result_
.
y1
=
loc
.
top
;
result_
.
x2
=
loc
.
right
;
result_
.
y2
=
loc
.
bottom
;
result_
.
conf
=
confidenceMax
;
result_
.
label
=
Integer
.
toString
(
labelId
);
bboxes_
.
add
(
result_
);
// bboxes.add(result);
}
}
}
// Comparator<Recognition> boxComparator = new Comparator<Recognition>() {
// @Override
// public int compare(Recognition box1, Recognition box2) {
// return (box1.getConfidence() > box2.getConfidence() ? 1 : 0);
// }
// };
Comparator
<
Bbox
>
boxComparator_
=
new
Comparator
<
Bbox
>()
{
@Override
public
int
compare
(
Bbox
box1
,
Bbox
box2
)
{
return
(
box1
.
getConfidence
()
>
box2
.
getConfidence
()
?
1
:
0
);
}
};
// Collections.sort(bboxes, boxComparator);
Collections
.
sort
(
bboxes_
,
boxComparator_
);
return
bboxes_
;
}
private
List
<
Bbox
>
nms
(
List
<
Bbox
>
bboxes
)
{
List
<
Bbox
>
selected
=
new
ArrayList
<
Bbox
>();
for
(
Bbox
boxA
:
bboxes
)
{
boolean
shouldSelect
=
true
;
// Does the current box overlap one of the selected boxes more than the
// given threshold amount? Then it's too similar, so don't keep it.
for
(
Bbox
boxB
:
selected
)
{
if
(
IOU
(
boxA
,
boxB
)
>
IOU_THRESHOLD
)
{
shouldSelect
=
false
;
break
;
}
}
// This bounding box did not overlap too much with any previously selected
// bounding box, so we'll keep it.
if
(
shouldSelect
)
{
selected
.
add
(
boxA
);
}
}
return
selected
;
}
private
float
IOU
(
Bbox
a
,
Bbox
b
)
{
float
areaA
=
(
a
.
x2
-
a
.
x1
)
*
(
a
.
y2
-
a
.
y1
);
if
(
areaA
<=
0
)
{
return
0
;
}
float
areaB
=
(
b
.
x2
-
b
.
x1
)
*
(
b
.
y2
-
b
.
y1
);
if
(
areaB
<=
0
)
{
return
0
;
}
float
intersectionMinX
=
Math
.
max
(
a
.
x1
,
b
.
x1
);
float
intersectionMinY
=
Math
.
max
(
a
.
y1
,
b
.
y1
);
float
intersectionMaxX
=
Math
.
min
(
a
.
x2
,
b
.
x2
);
float
intersectionMaxY
=
Math
.
min
(
a
.
y2
,
b
.
y2
);
float
intersectionArea
=
Math
.
max
(
intersectionMaxY
-
intersectionMinY
,
0
)
*
Math
.
max
(
intersectionMaxX
-
intersectionMinX
,
0
);
return
intersectionArea
/
(
areaA
+
areaB
-
intersectionArea
);
}
@SafeVarargs
private
final
void
releaseTensors
(
Map
<
String
,
?
extends
Tensor
>...
tensorMaps
)
{
for
(
Map
<
String
,
?
extends
Tensor
>
tensorMap:
tensorMaps
)
{
for
(
Tensor
tensor:
tensorMap
.
values
())
{
tensor
.
release
();
}
}
}
public
void
close
()
{
network
.
release
();
// releaseTensors(inputs);
releaseTf8Tensors
(
inputTensors
,
outputTensors
);
}
private
final
void
releaseTf8Tensors
(
Map
<
String
,
?
extends
UserBufferTensor
>...
tensorMaps
)
{
for
(
Map
<
String
,
?
extends
UserBufferTensor
>
tensorMap:
tensorMaps
)
{
for
(
UserBufferTensor
tensor:
tensorMap
.
values
())
{
tensor
.
release
();
}
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment