Commit e8c3439a authored by Quan's avatar Quan

add a little Mobilenet

parent 90c97ff3
......@@ -6,7 +6,6 @@ import android.graphics.RectF;
import org.opencv.core.Mat;
import java.time.LocalDateTime;
import java.util.ArrayList;
public class Bbox implements Comparable<Bbox> {
......@@ -41,7 +40,7 @@ public class Bbox implements Comparable<Bbox> {
//time
public Long lastUpdated = System.currentTimeMillis();
public Long lastFrExecuted = System.currentTimeMillis();
public LocalDateTime recognizedDate = LocalDateTime.now();
//feature
public float[] feature;
......
package com.qualcomm.qti.snpe.imageclassifiers.detector;
import android.app.Application;
import android.content.Context;
import android.content.res.Resources;
import android.graphics.Bitmap;
import android.graphics.RectF;
import android.util.Log;
import com.qualcomm.qti.snpe.FloatTensor;
import com.qualcomm.qti.snpe.NeuralNetwork;
import com.qualcomm.qti.snpe.SNPE;
import com.qualcomm.qti.snpe.TF8UserBufferTensor;
import com.qualcomm.qti.snpe.Tensor;
import com.qualcomm.qti.snpe.UserBufferTensor;
import org.opencv.android.Utils;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
public class MobilenetDetector {
static final String LOGTAG = MobilenetDetector.class.getSimpleName();
/**Model size**/
public static final int MODEL_WIDTH = 300;
public static final int MODEL_HEIGHT = 300;
public boolean isUsingQuantized = false;
NeuralNetwork network = null;
// Prepare input buffer
String mInputLayer = "";
Set<String> mOutputLayer;
private FloatTensor inputTensor = null;
private Map<String, TF8UserBufferTensor> inputTensors = new HashMap<>();
private Map<String, TF8UserBufferTensor> outputTensors = new HashMap<>();
private float mRatioWidth;
private float mRatioHeight;
private float[] inputValues = new float[MODEL_WIDTH * MODEL_HEIGHT * 3];
private Map<String, FloatTensor> inputs = new HashMap<>();
public final List<Anchor> anchors = new ArrayList<Anchor>();
private float IOU_THRESHOLD = (float) 0.35;
public MobilenetDetector(
Context context,
Application application,
int modelRes
) {
final Resources res = context.getResources();
final InputStream modelInputStream = res.openRawResource(modelRes);
try {
final SNPE.NeuralNetworkBuilder builder = new SNPE.NeuralNetworkBuilder(application)
.setDebugEnabled(false)
.setRuntimeOrder(
// NeuralNetwork.Runtime.AIP,
NeuralNetwork.Runtime.DSP,
NeuralNetwork.Runtime.GPU_FLOAT16,
NeuralNetwork.Runtime.GPU,
NeuralNetwork.Runtime.CPU
)
.setModel(modelInputStream, modelInputStream.available())
.setOutputLayers("concatenation_0",
"concatenation_1")
.setCpuFallbackEnabled(true)
.setUseUserSuppliedBuffers(isUsingQuantized)
.setPerformanceProfile(NeuralNetwork.PerformanceProfile.HIGH_PERFORMANCE);
network = builder.build();
// Prepare inputs buffer
mInputLayer = network.getInputTensorsNames().iterator().next();
mOutputLayer = network.getOutputTensorsNames();
inputTensor = network.createFloatTensor(network.getInputTensorsShapes().get(mInputLayer));
createAnchor();
Log.d(LOGTAG, "Mobilenet Detector initiated " + network.getInputTensorsShapes().entrySet().iterator().next().getValue().length);
} catch (IOException e) {
// Do something here
}
}
public List<Bbox> detectFrame(Bitmap frame) {
mRatioWidth = (float) (MODEL_WIDTH / (frame.getWidth() * 1.0));
mRatioHeight = (float)(MODEL_HEIGHT / (frame.getHeight()* 1.0));
/**Preprocessing**/
long preProcessStart = System.currentTimeMillis();
Mat frameCv = new Mat();
Bitmap frame32 = frame.copy(Bitmap.Config.ARGB_8888, true);
Utils.bitmapToMat(frame32, frameCv);
Mat resizeimage = new Mat();
Size sz = new Size(MODEL_WIDTH,MODEL_HEIGHT);
Imgproc.resize( frameCv, resizeimage, sz );
Imgproc.cvtColor(resizeimage , resizeimage , Imgproc.COLOR_RGBA2RGB);//COLOR_RGBA2RGB
resizeimage.convertTo(resizeimage, CvType.CV_32F);//, 1.0, 0); //convert to 32F
Core.subtract(resizeimage, new Scalar(127.0f, 127.0f, 127.0f), resizeimage);
Core.divide(resizeimage, new Scalar(128.0f, 128.0f, 128.0f), resizeimage);
resizeimage.get(0, 0, inputValues); //image.astype(np.float32)
long preProcessTime = System.currentTimeMillis()- preProcessStart;
Log.d(LOGTAG,"Preprocess_time: "+ preProcessTime);
/**Preprocessing**/
/**Convert to FloatTensor**/
long convertTensorStart = System.currentTimeMillis();
if (!isUsingQuantized){
inputTensor.write(inputValues, 0, inputValues.length);
inputs.put(mInputLayer, inputTensor);
} else {
}
long convertTensorTime = System.currentTimeMillis()- convertTensorStart;
Log.d(LOGTAG,"convertTensor_time: "+ convertTensorTime);
/**Convert to FloatTensor**/
/**Execute model**/
long modelExecutionStart = System.currentTimeMillis();
final Map<String, FloatTensor> outputs = network.execute(inputs);
long modelExecutionTime = System.currentTimeMillis() - modelExecutionStart;
Log.d(LOGTAG,"model_Execute: "+ modelExecutionTime);
/**Execute model**/
/**Anchor**/
long anchorStart = System.currentTimeMillis();
List<float[]> detectList = convertOutputs(outputs);
float[] locations = detectList.get(0);
float[] confidences = detectList.get(1);
List<Bbox> bboxes = buildBbox(confidences, locations);
long anchorTime = System.currentTimeMillis() - anchorStart;
Log.d(LOGTAG,"anchorExecute: "+ anchorTime);
/**Anchor**/
/**NMS**/
long NMSstart = System.currentTimeMillis();
bboxes = nms(bboxes);
long NMStime = System.currentTimeMillis() - NMSstart;
Log.d(LOGTAG,"NMS : "+ NMStime);
/**NMS**/
return bboxes;
}
private List<float[]> convertOutputs(Map<String, FloatTensor> outputs) {
float[] locations = {};
float[] confidences = {};
List<float[]> detectList = new ArrayList<>();
for (Map.Entry<String, FloatTensor> output : outputs.entrySet()) {
FloatTensor outputTensor = output.getValue();
switch (output.getKey()) {
case "locations":
locations = new float[outputTensor.getSize()];
outputTensor.read(locations, 0, locations.length);
// Log.d(LOGTAG,"locations" + Arrays.toString(locations));
break;
case "confidences":
confidences = new float[outputTensor.getSize()];
outputTensor.read(confidences, 0, confidences.length);
// Log.d(LOGTAG,"confidences" + Arrays.toString(confidences));
break;
}
}
detectList.add(locations);
detectList.add(confidences);
return detectList;
}
private void createAnchor() {
float[] feature_map_sizes = {19, 10, 5, 3, 2, 1};
float[] shrinkage = {16, 32, 64, 100, 150, 300};
float[][] box_sizes = {{60, 105}, {105, 150}, {150, 195}, {195, 240}, {240, 285}, {285, 330}};
float[] ratios = {2.0f, 3.0f};
float image_size = 300;
float[] priors = {};
for (int index=0; index< feature_map_sizes.length ; index++ )
{
float scale = image_size / shrinkage[index];
for (int j = 0; j < feature_map_sizes[index]; j++) {
for (int i = 0; i < feature_map_sizes[index]; i++) {
float x_center = (float) (i + 0.5) / scale;
float y_center = (float) (j + 0.5) / scale;
float size1 = box_sizes[index][0];
float h1 = size1 / image_size;
float w1 = size1 / image_size;
final Anchor anchor1 = new Anchor(x_center, y_center, w1, h1);
anchors.add(anchor1);
float size2 = (float) Math.sqrt(box_sizes[index][0] * box_sizes[index][1]);
float h2 = size2 / image_size;
float w2 = size2 / image_size;
final Anchor anchor2 = new Anchor(x_center, y_center, w2, h2 );
anchors.add(anchor2);
for (float ratio: ratios) {
float ratio_sqrt = (float) Math.sqrt(ratio);
final Anchor anchor3 = new Anchor(x_center, y_center, w1*ratio_sqrt, h1 / ratio_sqrt);
anchors.add(anchor3);
final Anchor anchor4 = new Anchor(x_center, y_center, w1/ratio_sqrt, h1 * ratio_sqrt);
anchors.add(anchor4);
}
}
}
}
}
public RectF translate(final RectF location) {
//Log.d(LOGTAG,"During translate: " + mRatioWidth + " " + mRatioHeight);
return new RectF((location.left / mRatioWidth),
(location.top / mRatioHeight),
(location.right / mRatioWidth),
(location.bottom / mRatioHeight));
}
private List<Bbox> buildBbox(float[] scores, float[] boxes) {
// final ArrayList<Recognition> bboxes = new ArrayList<Recognition>();
final ArrayList<Bbox> bboxes_ = new ArrayList<Bbox>();
{
for (int i = 0; i < anchors.size(); ++i) {
float cx = scores[i * 21];
float c_car = scores[i * 21 + 7];
float c_bicycle = scores[i * 21 + 2];
float c_bus = scores[i * 21 + 6];
float c_motorbike = scores[i * 21 + 14];
float c_person = scores[i * 21 + 15];
float sum_of_exp = 0 ;
for (int j = 0;j < 21;j++){
sum_of_exp += (float) Math.exp(scores[i * 21 + j]);
}
List confidences = new ArrayList<Float>();
confidences.add((float) (Math.exp(c_car))/sum_of_exp);
confidences.add((float) (Math.exp(c_bicycle))/sum_of_exp);
confidences.add((float) (Math.exp(c_bus))/sum_of_exp);
confidences.add((float) (Math.exp(c_motorbike))/sum_of_exp);
confidences.add((float) (Math.exp(c_person))/sum_of_exp);
float confidenceMax = (float) Collections.max(confidences);
int labelId = confidences.indexOf(confidenceMax);
if (confidenceMax > 0.3) {
Anchor tmp = anchors.get(i);
Anchor tmp1 = new Anchor();
// Recognition result = new Recognition();
Bbox result_ = new Bbox();
tmp1.cx = (float) (tmp.cx + boxes[i * 4] * 0.1 * tmp.sx);
tmp1.cy = (float) (tmp.cy + boxes[i * 4 + 1] * 0.1 * tmp.sy);
tmp1.sx = (float) (tmp.sx * Math.exp(boxes[i * 4 + 2] * 0.2));
tmp1.sy = (float) (tmp.sy * Math.exp(boxes[i * 4 + 3] * 0.2));
// Extract bbox and confidences
float x1 = (tmp1.cx - tmp1.sx / 2) * MODEL_WIDTH;//result
if (x1 < 0) x1 = 0;
float y1 = (tmp1.cy - tmp1.sy / 2) * MODEL_HEIGHT;
if (y1 < 0) y1 = 0;
float x2 = (tmp1.cx + tmp1.sx / 2) * MODEL_WIDTH;
if (x2 > MODEL_WIDTH) x2 = MODEL_WIDTH;
float y2 = (tmp1.cy + tmp1.sy / 2) * MODEL_HEIGHT;
if (y2 > MODEL_HEIGHT) y2 = MODEL_HEIGHT;
RectF loc = new RectF(x1, y1, x2, y2);
loc = translate(loc);
// result.mLocation = loc;
// //translate before add
// result.mConfidenceX = cx;//conf
// result.mConfidenceY = cy;
result_.x1 = loc.left;
result_.y1 = loc.top;
result_.x2 = loc.right;
result_.y2 = loc.bottom;
result_.conf = confidenceMax;
result_.label = Integer.toString(labelId);
bboxes_.add(result_);
// bboxes.add(result);
}
}
}
// Comparator<Recognition> boxComparator = new Comparator<Recognition>() {
// @Override
// public int compare(Recognition box1, Recognition box2) {
// return (box1.getConfidence() > box2.getConfidence() ? 1 : 0);
// }
// };
Comparator<Bbox> boxComparator_ = new Comparator<Bbox>() {
@Override
public int compare(Bbox box1, Bbox box2) {
return (box1.getConfidence() > box2.getConfidence() ? 1 : 0);
}
};
// Collections.sort(bboxes, boxComparator);
Collections.sort(bboxes_, boxComparator_);
return bboxes_;
}
private List<Bbox> nms(List<Bbox> bboxes) {
List<Bbox> selected = new ArrayList<Bbox>();
for (Bbox boxA : bboxes) {
boolean shouldSelect = true;
// Does the current box overlap one of the selected boxes more than the
// given threshold amount? Then it's too similar, so don't keep it.
for (Bbox boxB : selected) {
if (IOU(boxA, boxB) > IOU_THRESHOLD) {
shouldSelect = false;
break;
}
}
// This bounding box did not overlap too much with any previously selected
// bounding box, so we'll keep it.
if (shouldSelect) {
selected.add(boxA);
}
}
return selected;
}
private float IOU(Bbox a, Bbox b ) {
float areaA = (a.x2 - a.x1) * (a.y2 - a.y1);
if (areaA <= 0) {
return 0;
}
float areaB = (b.x2 - b.x1) * (b.y2 - b.y1);
if (areaB <= 0) {
return 0;
}
float intersectionMinX = Math.max(a.x1, b.x1);
float intersectionMinY = Math.max(a.y1, b.y1);
float intersectionMaxX = Math.min(a.x2, b.x2);
float intersectionMaxY = Math.min(a.y2, b.y2);
float intersectionArea = Math.max(intersectionMaxY - intersectionMinY, 0) *
Math.max(intersectionMaxX - intersectionMinX, 0);
return intersectionArea / (areaA + areaB - intersectionArea);
}
@SafeVarargs
private final void releaseTensors(Map<String, ? extends Tensor>... tensorMaps) {
for (Map<String, ? extends Tensor> tensorMap: tensorMaps) {
for (Tensor tensor: tensorMap.values()) {
tensor.release();
}
}
}
public void close() {
network.release();
// releaseTensors(inputs);
releaseTf8Tensors(inputTensors, outputTensors);
}
private final void releaseTf8Tensors(Map<String, ? extends UserBufferTensor>... tensorMaps) {
for (Map<String, ? extends UserBufferTensor> tensorMap: tensorMaps) {
for (UserBufferTensor tensor: tensorMap.values()) {
tensor.release();
}
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment